Automated calibration of advanced cyclic plasticity model parameters with sensitivity analysis for aluminium alloy 2024-T351
نویسندگان
چکیده
منابع مشابه
Fatigue of Friction Stir Welded 2024-T351 Aluminium Alloy
Fatigue failure characteristics of friction stir welds in 13mm gauge 2024-T351 plate have been assessed. Failure occurred from either the weld region (nugget/flow arm) or from the material immediately surrounding the weld. Fatigue failure from the surrounding material was essentially conventional, initiating from large S-phase intermetallic particles and growing in a macroscopic mode I manner. ...
متن کاملCalibration of Hardening Rules for Cyclic Plasticity
In the realm of multi-axial ratcheting, a step by step mathematical approach is developed for the parameter determination of decomposed kinematic hardening rules. For this purpose, key characteristics are mathematically derived for these hardening rules under multi-axial loading. These characteristics are then utilized to develop expressions which relate the loading history to the accumulated p...
متن کاملA Strain Range Dependent Cyclic Plasticity Model
Hysteresis loop curves are highly important for numerical simulations of materials deformation under cyclic loadings. The models mainly take account of only the tensile half of the stabilized cycle in hysteresis loop for identification of the constants which don’t vary with accumulation of plastic strain and strain range of the hysteresis loop. This approach may be quite erroneous particularly ...
متن کاملLocalised corrosion in aluminium alloy 2024-T3 using in situ TEM.
An approach to carry out chemical reactions using aggressive gases in situ in a transmission electron microscope (TEM), at ambient pressures of 1.5 bar using a windowed environmental cell, called a nanoreactor, is presented here. The nanoreactor coupled with a specially developed holder with platinum tubing permits the usage of aggressive chemicals like hydrochloric acid (HCl).
متن کاملGlobal sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model
Efficient parameter identification is an important issue for mechanistic agro-hydrological models with a complex and nonlinear property. In this study, we presented an efficient global methodology of sensitivity analysis and parameter estimation for a physically-based agro-hydrological model (SWAP-EPIC). The LH-OAT based module and the modified-MGA based module were developed for parameter sens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2019
ISSN: 1687-8140,1687-8140
DOI: 10.1177/1687814019829982